AEROXIDE® fumed metal oxides are produced by flame hydrolysis (AEROSIL® process).

- Available metal oxides are fumed alumina and fumed titania.
- The loose white powder consists of nano-structured aggregates.
- Upon dispersing, small particles with mean aggregate sizes of ca. 100 nm can be obtained.
- AEROXIDE® products provide a very narrow particle size distribution.
- AEROXIDE® products exhibit high chemical purity (total metal trace elements < 200 ppm).

Physico-chemical data of fumed aluminum and titanium oxides.
The data represent typical values, no product specification.

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>AEROXIDE® Alu C</th>
<th>AEROXIDE® Alu 130</th>
<th>AEROXIDE® TiO₂ P 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET surface area</td>
<td>m²/g</td>
<td>85–115</td>
<td>110–150</td>
<td>35–65</td>
</tr>
<tr>
<td>pH (4 % eq. Dispersion)</td>
<td></td>
<td>4.5–5.5</td>
<td>4.4–5.4</td>
<td>3.5–4.5</td>
</tr>
<tr>
<td>Loss on drying</td>
<td>%</td>
<td>≤ 5.0</td>
<td>≤ 5.0</td>
<td>≤ 2.0</td>
</tr>
<tr>
<td>(2 h at 105 °C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamped density</td>
<td>g/l</td>
<td>approx. 50</td>
<td>approx. 50</td>
<td>approx. 140</td>
</tr>
</tbody>
</table>

This information and any recommendations, technical or otherwise, are presented in good faith and believed to be correct as of the date prepared. Recipients of this information and recommendations must make their own determination as to its suitability for their purposes. In no event shall Evonik assume liability for damages or losses of any kind or nature that result from the use or reliance upon this information and recommendations. EVONIK EXPRESSLY DISCLAIMS ANY REPRESENTATIONS AND WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO THE ACCURACY, COMPLETENESS, NON-INFRINGEMENT, MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE (EVEN IF EVONIK IS AWARE OF SUCH PURPOSE) WITH RESPECT TO ANY INFORMATION AND RECOMMENDATIONS PROVIDED. Reference to any trade names used by other companies is neither a recommendation nor an endorsement of the corresponding product, and does not imply that similar products could not be used. Evonik reserves the right to make any changes to the information and/or recommendations at any time, without prior or subsequent notice.

AEROXIDE® and AERODISP® are registered trademarks of Evonik Industries or one of its subsidiaries.
AEROXIDE® Fumed Metal Oxides

Evonik is a global leader in specialty chemicals. As a worldwide manufacturer of high-quality silica and metal oxides Evonik offers innovative solutions in the design of ultra-fine nanostructured particles as performance additives in Li-ion batteries.

AEROXIDE® fumed metal oxides from Evonik are used as additives in Li-ion batteries to increase the performance, life-time and safety of the battery.

A dry coating of cathode active materials, such as LCO, NCA and Ni-rich NMC types with AEROXIDE® features the following benefits:

- Surface protection of the cathode particles
- Less cathode material and electrolyte decomposition
- Significantly increased capacity retention
- Longer battery life
- Dry coating process applicable

The AEROXIDE® fumed metal oxide layer acts as defined SEI (solid electrolyte interface). It protects the cathode material from undesired reactions with electrolyte, especially at increased cut-off voltage.

A successful dry coating of the cathode particles with nano-structured AEROXIDE® is visible in the increase of powder density after coating process.

Preferred AEROXIDE® products:

- **AEROXIDE® Alu 130**
- **AEROXIDE® TiO₂ P 25**
 Mixture of both oxides beneficial!

High intensity powder mixing is required to de-agglomerate AEROXIDE® successfully to obtain a very homogenous coating.

AEGRIDE® Alu 130

example for stabilization of LCO Nano-structured AEROXIDE® is visible in the increase of powder density after coating process.

Preferred AEROXIDE® products:

- **AEROXIDE® Alu 130**
- **AEROXIDE® TiO₂ P 25**
 Mixture of both oxides beneficial!
AEROXIDE® Fumed Metal Oxides

Evonik is a global leader in specialty chemicals. As a worldwide manufacturer of high-quality silica and metal oxides Evonik offers innovative solutions in the design of ultra-fine nanostructured particles as performance additives in Li-ion batteries.

AEROXIDE® fumed metal oxides from Evonik are used as additives in Li-ion batteries to increase the performance, life-time and safety of the battery.

A dry coating of cathode active materials, such as LCO, NCA and Ni-rich NMC types with AEROXIDE® features the following benefits:

- **Surface protection of the cathode particles**
- **Less cathode material and electrolyte decomposition**
- **Significantly increased capacity retention**
- **Longer battery life**
- **Dry coating process applicable**

The AEROXIDE® fumed metal oxide layer acts as defined SEI (solid electrolyte interface). It protects the cathode material from undesired reactions with electrolyte, especially at increased cut-off voltage.

High intensity powder mixing is required to de-agglomerate AEROXIDE® successfully to obtain a very homogenous coating.

A successful dry coating of the cathode particles with nano-structured AEROXIDE® is visible in the increase of powder density after coating process.

Preferred AEROXIDE® products:

- **AEROXIDE® Alu 130**
- **AEROXIDE® TiO₂ P 25**
 - Mixture of both oxides beneficial!

Example for stabilization of LCO:

A dry coating of cathode active materials, such as LCO, NCA and Ni-rich NMC types with AEROXIDE® leads to a significant increase in capacity retention of LIB cells!
AEROXIDE® Fumed Metal Oxides

Evonik is a global leader in specialty chemicals. As a worldwide manufacturer of high-quality silica and metal oxides, Evonik offers innovative solutions in the design of ultra-fine nanostructured particles as performance additives in Li-ion batteries.

AEROXIDE® fumed metal oxides from Evonik are used as additives in Li-ion batteries to increase the performance, life-time and safety of the battery.

A dry coating of cathode active materials, such as LCO, NCA and Ni-rich NMC types with AEROXIDE® features the following benefits:

- Surface protection of the cathode particles
- Less cathode material and electrolyte decomposition
- Significantly increased capacity retention
- Longer battery life
- Dry coating process applicable

The AEROXIDE® fumed metal oxide layer acts as defined SEI (solid electrolyte interface). It protects the cathode material from undesired reactions with electrolyte, especially at increased cut-off voltage.

High intensity powder mixing is required to de-agglomerate AEROXIDE® successfully to obtain a very homogenous coating.

A successful dry coating of the cathode particles with nano-structured AEROXIDE® is visible in the increase of powder density after coating process.

Preferred AEROXIDE® products:
- AEROXIDE® Alu 130
- AEROXIDE® TiO₂ P 25
- Mixture of both oxides beneficial!

Example for stabilization of LCO.

Similar effect for Ni-rich NMC types (e.g. 811-NMC)

AEROXIDE® fumed metal oxides (Al₂O₃ and/or TiO₂) as dry coating on cathode particles leads to a significant increase in capacity retention of LIB cells!
AEROXIDE® fumed metal oxides are produced by flame hydrolysis (AEROSIL® process).

- Available metal oxides are fumed alumina and fumed titania.
- The loose white powder consists of nano-structured aggregates.
- Upon dispersing, small particles with mean aggregate sizes of ca. 100 nm can be obtained.
- AEROXIDE® products provide a very narrow particle size distribution.
- AEROXIDE® products exhibit high chemical purity (total metal trace elements < 200 ppm).

The SEM image shows a single AEROXIDE® TiO₂ P 25 aggregate.

Physico-chemical data of fumed aluminum and titanium oxides.
The data represent typical values, no product specification.

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>AEROXIDE® Alu C</th>
<th>AEROXIDE® Alu 130</th>
<th>AEROXIDE® TiO₂ P 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET surface area</td>
<td>m²/g</td>
<td>85–115</td>
<td>110–150</td>
<td>35–65</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>4.5–5.5</td>
<td>4.4–5.4</td>
<td>3.5–4.5</td>
</tr>
<tr>
<td>Loss on drying (2 h at 105 °C)</td>
<td>%</td>
<td>≤ 5.0</td>
<td>≤ 5.0</td>
<td>≤ 2.0</td>
</tr>
<tr>
<td>Tamped density</td>
<td>g/l</td>
<td>approx. 50</td>
<td>approx. 50</td>
<td>approx. 140</td>
</tr>
</tbody>
</table>
AEROXIDE® fumed metal oxides as dry coating for cathode materials

EUROPE / MIDDLE EAST / AFRICA / LATIN AMERICA
Evonik Resource Efficiency GmbH
Business Line Silica
Hofemmercher-Chaussee 4
63457 Hanau
Germany
Phone +49 6181 59-12532
Fax +49 6181 59-712532
ask-si@evonik.com
www.evonik.com

NORTH AMERICA
Evonik Corporation
Business Line Silica
299 Jefferson Road
Parsippany, NJ 07054-0677
USA
Phone +1 800 233-8052
Fax +1 973 929-8502
ask-si-nafta@evonik.com

ASIA PACIFIC
Evonik (SEA) Pte. Ltd.
Business Line Silica
3 International Business Park
#07-18, Nordic European Centre
Singapore 609927
Phone +65 6809-6877
Fax +65 6809-6677
ask-si-asia@evonik.com

This information and any recommendations, technical or otherwise, are presented in good faith and believed to be correct as of the date prepared. Recipients of this information and recommendations must make their own determination as to its suitability for their purpose. In no event shall Evonik assume liability for damages or losses of any kind or nature that result from the use of or reliance upon this information and recommendations. EVONIK EXPRESSLY DISCLAIMS ANY REPRESENTATIONS AND WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO THE ACCURACY, COMPLETENESS, NON-INFRINGEMENT, MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE (EVEN IF EVONIK IS AWARE OF SUCH PURPOSE) WITH RESPECT TO ANY INFORMATION AND RECOMMENDATIONS PROVIDED. Reference to any trademark names used by other companies is neither a recommendation nor an endorsement of the corresponding product, and does not imply that similar products could not be used. Evonik reserves the right to make any changes to the information and/or recommendations at any time, without prior or subsequent notice. AEROXIDE® and AEROSIL® are registered trademarks of Evonik Industries or one of its subsidiaries.

- AEROXIDE® fumed metal oxides are produced by flame hydrolysis (AEROSIL® process).
- Available metal oxides are fumed alumina and fumed titania.
- The loose white powder consists of nano-structured aggregates.
- Upon dispersing, small particles with mean aggregate sizes of ca. 100 nm can be obtained.
- AEROXIDE® products provide a very narrow particle size distribution.
- AEROXIDE® products exhibit high chemical purity (total metal trace elements < 200 ppm).

Physico-chemical data of fumed aluminum and titanium oxides.

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>AEROXIDE® Alu C</th>
<th>AEROXIDE® Alu 130</th>
<th>AEROXIDE® TiO₂ P 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET surface area</td>
<td>m²/g</td>
<td>85 – 115</td>
<td>110 – 150</td>
<td>35 – 65</td>
</tr>
<tr>
<td>pH (4 % eq. Dispersion)</td>
<td></td>
<td>4.5 – 5.5</td>
<td>4.4 – 5.4</td>
<td>3.5 – 4.5</td>
</tr>
<tr>
<td>Loss on drying (2 h at 105 °C)</td>
<td>%</td>
<td>≤ 5.0</td>
<td>≤ 5.0</td>
<td>≤ 2.0</td>
</tr>
<tr>
<td>Tamped density</td>
<td>g/l</td>
<td>approx. 50</td>
<td>approx. 50</td>
<td>approx. 140</td>
</tr>
</tbody>
</table>